US009083724B2

a2 United States Patent

Karnawat et al.

US 9,083,724 B2
Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

SYSTEM ITERATIVELY REDUCING I/O
REQUESTS DURING MIGRATION OF
VIRTUAL STORAGE SYSTEM

Applicant: NETAPP, INC., Sunnyvale, CA (US)

Rakshit Karnawat, Bangalore (IN);
Harsha Sridhara, Bangalore (IN);
Balaji Ramani, Bangalore (IN)

Inventors:

Assignee: NETAPP, INC., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 306 days.

Appl. No.: 13/905,920

Filed: May 30, 2013

Prior Publication Data

US 2014/0359058 A1 Dec. 4, 2014

Int. Cl1.
GO6F 15/16
HO4L 29/08
HO4L 12/801
HO4L 12/803
HO4L 12/825
HO4L 12/815
GO6F 17/30
GO6F 3/06

U.S. CL
CPC HO4L 67/1097 (2013.01); GO6F 3/067
(2013.01); GOGF 3/0611 (2013.01); GO6F
3/0617 (2013.01); GO6F 3/0647 (2013.01);
GO6F 17/30283 (2013.01); HO4L 47/10
(2013.01); HO4L 47/125 (2013.01); HO4L
47/13 (2013.01); HO4L 47/225 (2013.01);
HO4L 47/25 (2013.01); HO4L 47/263 (2013.01)

(2006.01)
(2006.01)
(2013.01)
(2013.01)
(2013.01)
(2013.01)
(2006.01)
(2006.01)

(58) Field of Classification Search
CPC ... HO4L 47/10, HO4L 47/125; HO4L 47/13;
HO4L 47/225; HO4L 47/25; HO4L 47/263;
GOG6F 17/30283

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,721,789 B1* 4/2004 DeMoneyocc..... 709/219

8,452,856 Bl 5/2013 Lent et al.

8,812,806 B2* 82014 Fredricksenetal. 711/165
2008/0222375 Al* 9/2008 Kotsovinosetal. 711/162
2008/0288948 Al* 11/2008 Attardeetal. 718/103
2009/0125962 Al* 52009 Coloskyetal. 725/116

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO02012/058169 5/2012

OTHER PUBLICATIONS

International Search Report and Written Opinion on corresponding
PCT application (PCT/US2014/038730) from International Search-
ing Authority (EPO) dated Aug. 13, 2014.

Primary Examiner — Le H Luu
(74) Attorney, Agent, or Firm — Klein, O’Neill & Singh,
LLP

(57) ABSTRACT

Method and system for a non-disruptive migration of a source
virtual storage system from a source cluster to a destination
cluster is provided. The method includes monitoring a current
transfer rate for migrating information from the source cluster
to the destination cluster during a migration operation; itera-
tively reducing a rate at which /O requests are processed until
atransfer rate for transferring the information from the source
cluster to the destination cluster within the duration is
reached; and entering a cutover phase for the migration opera-
tion when the virtual storage system presented by the source
cluster is taken offline for the duration and after the informa-
tion is migrated to the destination cluster, the virtual storage
system is presented by the destination cluster.

24 Claims, 11 Drawing Sheets

2

20
- /

CLUSTER
SWITCHING
FABRIC

210

MANAGEMENT

NODE -l

2083 | ‘Has
-

N-MODULE D-MODULE

242 [T 2162 }‘ @

CONSOLE
120

VServer
222N

-
N-MODULE D-MODULE
214.3 Hzm.a]‘ @

US 9,083,724 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0259791 Al* 10/2009 Mizuno etal. 710/316
2010/0332401 Al* 12/2010 Prahladetal. 705/80

2011/0022812 Al*
2011/0225359 Al

2011/0231604 Al*
2012/0239859 Al*

* cited by examiner

1/2011
9/2011
9/2011
9/2012

van der Linden etal. 711/163
Kulkarni et al.

Taguchietal. 711/114
Laryetal.ccccoeeenns 711/103

U.S. Patent Jul. 14, 2015 Sheet 1 of 11 US 9,083,724 B2
CLIENT CLIENT 100
104.1 104.N ¥
VIRTUAL STORAGE
NETWORK 31251LEM
106 e
MACNg‘[fSE(g"LiNT STORAGE SYSTEM
120 VIRTUAL STORAGE 108N
S SYSTEM OPERATING
STORAGE 121A SYSTEM
MANAGEMENT 109
APPLICATION
118 STORAGE SYSTEM
1084 ADAPTER
OPERATING 123N
SYSTEM ==
109 | I l l
111N
ADAPTER
123A
<>

US 9,083,724 B2

Sheet 2 of 11

Jul. 14, 2015

U.S. Patent

¢ 9Ol
— NZZ<e
£8le m.DOZ onegn [
LSOH-IN £ 80¢
€9l |le—pl EVIC 07T
J1NAON-d IJINAON-N S10SNOS
<4, S Z
INIWIOVYNYIN
791z Zvie — Y
JTNAON-A JTINAON-N Ole ¢ v0c
™ Ondavd 0zz_) INE(fe)
=8z e | ONIHOLIMS 4IA +
L SOH-IN m %%m_ H31sSN1o
0cc R
dIA /«7 L' #0¢
7 T IN3D
L'9l¢ A4 A_
™ 3naow-a [31naonN <
A O — VZZz
1'80¢ l'8lc JOAIBSA
c0c¢ JAON LSOH-IN
002

US 9,083,724 B2

Sheet 3 of 11

Jul. 14, 2015

U.S. Patent

Ve Ol
- s T
[¥4%4 oldgv- -
IOVHOLS ONIHOLIMS \7 Y02 70¢C
NOE4/OL W_/Mu._w_mu_ﬁ\ww. FdNLONYLS SINIIO
o - V1vd 9I4dNOD NOd/OL
H H o H
857 dOVdOLS p—
gie ¢le | yalavav WO 0l¢
d31dvav SS300V T d31dvav
d49Vd0l1S d431SN710 HHOMLEN
-
wom;
— gc0e V20t
90¢ d0SSd00dd d0SS300dd
W3LSAS
ONILYH3d0
\ d9Vd0lLS
1°80Z 70S AHOWIN

US 9,083,724 B2

Sheet 4 of 11

Jul. 14, 2015

U.S. Patent

de old
NCEE |_ | V&g NOEe |_ | V0¢€€
N SWnjoA L 8WN|OA N SWnN|OA L SWNJOA
Q7¢ lesn|p uoneunsseq gZ¢ J8isn|p s0inog
[ZASEE LYY ajelbiN —
wogeunssg |] 0ce ASMESA
N¥0c I L 'v0c
wajsAg Jualln waisAg JualD

00¢€

US 9,083,724 B2

Sheet 5 of 11

Jul. 14, 2015

U.S. Patent

(a AL {on] NO€ Old7 N
IOA oA Vv89¢ IOA | —1OA
— T T - - 5 1aBeuepy ﬂv “
489¢ aWINjOA
sopmoey [1NEEE veee uonsoudex 7P| euuz NOEE VOEE
(_swnppn) (EFOE o6 || \uonedlday VvoE Vase
e uaby usby ajnpo
d8gt uoneibip mmwm p— uoneiBIn mc_w;mzﬁz
a|npol ~5 ueishs aid V09S¢ y y— 7y vooe
BupiiomieN apeig- wieisAg 84 veese |
o y g96¢ epelg-d) 8 [_ ape|g-a /
- N Y0G¢e - , X
Jusby aoinleg ™~ Jaby aoineg
hmum_v\m,_w ﬁwwuww_.m — —H uopeoydoy |4|— — — ~ HH uoneoydey — \m m_:vos@ ﬁmws_
H Byuo)n ml Biyuocn 403281 dIN
(mvmm gere)0 w1 Vet [)
a06¢ TE
spalgo |9¢5¢€ spalgo | | 048 PINPON <vmm
JEISELT Jjeniesy, | [uewebeuep
P v
‘ \
([gove) [vore) N v)
JeBeuepy arvre lebeuepy Vv 19|pueH
2)e1S SINPON 54O 2)elS 3INPON SHO soeq|e
uoneiBip § _uonelBiy L IS J
s A \ aYa N N
gore || 28t [doce Pl vovE veEE || woee
JeuIpio-09 I0}eUIpIO-07)
Jabeuepy JabBeuey 1abeuepy Jabeuelpy
eag pes Wieby Jsaon 9Lt eog Heo WioBy 1aAoin
fa g I\ uoneiBI Ny fu g4 I\ L uogeibiy L no)
L gree sinhpo uonelbipy uoneunsaq y 9 YHEE eIinpoy uonelbipy mo_sow\
L JSOH-N_)) L JSOH-N_))
L Q7cC Je)sn|) uoneunsa() 9 CE Jesn|g eoinog

VLE

US 9,083,724 B2

Sheet 6 of 11

Jul. 14, 2015

U.S. Patent

aoog 00.L€ doce
| ,
Ewwm\nw SOD || uoneoidey

~

\

ac old

Qyoe— by uonelbipy
¢ ©PON
Vv09¢ V0.€ Vcote
woeishs
o SOD || uonesyjdey

>~

\

V9¢ —

Wby uonelbipy

0 ®PON

009¢ d0.¢ 09¢¢
w | ,
EMM\AW soo || uonesidey

>~

\

Vo€ —j

eby uonelbiy

| ®PON

U.S. Patent Jul. 14, 2015 Sheet 7 of 11 US 9,083,724 B2

301

Setup Vserver migration
(Setup Phase)

—B305

Initiate migration

(Baseline Phase / Update Phase) —B307

(Administrative Cutover Phase)
Execute an administrative ——B309
“cutover” operation

Perform cutover, when migration
is non-disruptive ~—B311
(Cutover Phase)

Activate Vserver at
destination cluster —B313
(Activation Phase)

FIG. 3E

US 9,083,724 B2

Sheet 8 of 11

Jul. 14, 2015

U.S. Patent

4¢€ "Old
3INod 1¥V1S ~—61LE
>@)<
[paddolg juaby [paddoyg jusby oF Lp
uonelBiN] uonelBi| dor yeys/
A HINGISA w d3A0LND),
6C¢ NMOCLAHS LEC Tyogy J* oqy | ANINISVE AN
4 7 Y S Y
ajepdn 0}09
UMOCINUS /[(pelsidwo)
HoQY Hoqy slejsuel]
Hoqy aulaseq)
A4
1MV1S (H3A0LND), (w
LCE ¥3A0LND S Taroms e NINaY J Tenomg 31vddn €ce
UlpY 104 Apesy]
STAS JBAOIND UIlWpY

[umoqg uoneunse
HO Jusby sjelbin]

[umo(g uoneunsaQ
d0O
umo(Jusby uoneibipy

d0
awli} JeAoing pesoxd]

L€

US 9,083,724 B2

Sheet 9 of 11

Jul. 14, 2015

U.S. Patent

¢ 9Ol

uonesbiw
a)9|dwoo pue
aseyd JaAoino Jejug

Juoneinp 1aAoino
uIyum uonesbiw ayeidwos ues
ajel Jhdybnoay |

)

Lyed

ajes indybnouyy
B SUIWI8}ep pue Jaisnio
uoljeusap o} pajesijdal buiaqg
Sl ejep Yoiym je sjel e Uielqo

6€cd —

eved

,

olen

jusipo sjjoly L
ON

Gyed

w

uoneoldeal
[eluswalioul
uopad

aseyd Jaaonn
SAljelISIUILIPDY LelS

Leed

Ggee

US 9,083,724 B2

Sheet 10 of 11

Jul. 14, 2015

U.S. Patent

v Old
bcle ¢v0c/Lv0c
d9OVd0lS SIN3IMD
WOYd/01 WOX4/01
! 4
- | “ 307
80V | | Y3AV1SS300V
SYININA FOVHOLS “ _ WHOMLIN
e *
707 | ~ o
HIAVT | “ 0
S$S300V JOVHOLS | | H3AV1I1000.104d
I !
b e _
00¥ HIOVNVIN WILSAS 3114
\ V¥9E 5T%
INIOV
90¢ NOLLYSOIN 3FINAOW SOD

US 9,083,724 B2

Sheet 11 of 11

Jul. 14, 2015

U.S. Patent

G Ol
AHJOMLIN WOYH4/OL
4% 0lg 80%
d31dvav JOVd0Ols
AOMIIN SSYIN F9IN3d o1
-
_ _
mom; — _
09 FHYMLHOS S
S 0S AHOWIN d40SS300dd
009

US 9,083,724 B2

1
SYSTEM ITERATIVELY REDUCING I/O
REQUESTS DURING MIGRATION OF
VIRTUAL STORAGE SYSTEM

TECHNICAL FIELD

The present disclosure relates to storage systems and more
particularly, to virtual storage system migration.

BACKGROUND

Various forms of storage systems are used today. These
forms include direct attached storage, network attached stor-
age (NAS) systems, storage area networks (SANs), and oth-
ers. Storage systems are commonly used for a variety of
purposes, such as providing multiple users with access to
shared data, backing up data and others.

A storage system typically includes at least one computing
system (may also be referred to as a “server” or “storage
server”), which is a processing system configured to store and
retrieve data on behalf of one or more client computing sys-
tems (“clients”). The storage system may be presented to a
client system as a virtual storage system with storage space
for storing information. The virtual storage system is associ-
ated with a physical storage system but operates as an inde-
pendent system for handling client input/output (I/O)
requests.

The virtual storage system may be migrated from one
source system to a destination system. It is desirable to com-
plete a migration operation from the source to the destination
within a duration that is non-disruptive for clients. Continu-
ous efforts are being made for efficiently performing a migra-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features and other features will now be
described with reference to the drawings of the various
embodiments. In the drawings, the same components have the
same reference numerals. The illustrated embodiments are
intended to illustrate, but not to limit the present disclosure.
The drawings include the following Figures:

FIG. 1 shows an example of a storage environment, used
according to one embodiment;

FIG. 2 shows a block diagram of a cluster based storage
system, used according to one embodiment;

FIG. 3A shows an example of a node used in cluster based
storage system, used according to one embodiment;

FIG. 3B shows a high level system for migrating informa-
tion from a source cluster to a destination cluster, according to
one embodiment;

FIG. 3C shows a detailed architecture of a system for
migration information, according to one embodiment;

FIG. 3D shows an example of using a migration agent at a
plurality of nodes, according to one embodiment;

FIGS. 3E-3G show process flows for migrating informa-
tion according to one embodiment;

FIG. 4 shows a block diagram of an operating system, used
according to one embodiment; and

FIG. 5 shows an example of a processing system used
according to one embodiment.

DETAILED DESCRIPTION

As a preliminary note, as used in this disclosure, the terms
“component” “module”, “system,” and the like are intended

to refer to a computer-related entity, either software-execut-

10

20

25

30

35

40

45

50

55

60

65

2

ing general purpose processor, hardware, firmware and a
combination thereof. For example, a component may be, but
is not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a server and the server can be a com-
ponent. One or more components may reside within a process
and/or thread of execution and a component may be localized
on one computer and/or distributed between two or more
computers. Also, these components can execute from various
computer readable media having various data structures
stored thereon.

The components may communicate via local and/or
remote processes such as in accordance with a signal having
one or more data packets (e.g., data from one component
interacting with another component in a local system, distrib-
uted system, and/or across a network such as the Internet with
other systems via the signal). Computer executable compo-
nents can be stored, for example, on computer readable media
including, but not limited to, an ASIC (application specific
integrated circuit), CD (compact disc), DVD (digital video
disk), ROM (read only memory), floppy disk, hard disk,
EEPROM (electrically erasable programmable read only
memory), memory stick or any other storage device, in accor-
dance with the claimed subject matter.

Storage Environment 100: FIG. 1 depicts an illustrative
embodiment of a non-clustered storage environment 100,
including a plurality of client computing systems/devices
104.1-104.N (may also be referred to as client 104 or clients
104), storage systems 108 A-108N (may also be referred to as
storage system 108), a management console 120 and at least
one network 106 communicably connecting client systems
104.1-104.N, storage systems 108 and management console
120.

Clients” 104.1-104.N may be general purpose computers
having a plurality of components. These components may
include a central processing unit (CPU), main memory, [/O
devices, and storage devices (for example, flash memory,
hard drives and others). The main memory may be coupled to
the CPU via a system bus or a local memory bus. The main
memory may be used to provide the CPU access to data
and/or program information that is stored in main memory at
execution time. Typically, the main memory is composed of
random access memory (RAM) circuits. A computer system
with the CPU and main memory is often referred to as a host
system.

Each storage system 108 may include or interface with a
storage subsystem 111 (shown as 111A-111N) having mul-
tiple mass storage devices 112A-112N (may also be referred
to as storage device(s) 112) and at least an adapter 123 (shown
as 123A-123N) that interfaces between storage system 108
and storage devices 112. Adapter 123 may be a network
interface card, a host bus adapter, a host channel adapter or
any other adapter type that can interface with storage system
108 for facilitating execution of input/output requests. The
mass storage devices 112 may be, for example, conventional
magnetic disks, optical disks such as CD-ROM or DVD based
storage, magneto-optical (MO) storage, or any other type of
non-volatile storage devices suitable for storing structured or
unstructured data.

The storage system 108 executes a storage operating sys-
tem 109 for managing storage space within storage sub-
system 111 and presenting storage space to clients 104. As an
example, storage operating system 109 maybe the DATA
ONTAP® storage operating system, available from

US 9,083,724 B2

3

NetApp®, Inc., that implements a Write Anywhere File Lay-
out (WAFL®) storage system, or any other suitable storage
operating system.

Storage operating system 109 and applications running on
the client systems 104.1-104.N communicate according to
well-known protocols, such as the NFS protocol or the CIFS
protocol, to make data stored on storage device 112 appear to
users and/or application programs as though the data were
stored locally on the client systems 104.1-104.N. CIFS means
the Common Internet File System Protocol, an access proto-
col that client systems use to request file access services from
storage systems over a network. NFS means a Network File
System, a protocol that allows a user to access storage over a
network.

Storage operating system 109 can present or export data
stored on at storage devices 112 as a volume, or one or more
qtree sub-volume units, to each of the client systems 104.1-
104.N. In one embodiment, a volume is a logical data set
which is an abstraction of physical storage, combining one or
more physical mass storage devices or parts thereof into a
single logical storage object. From the perspective of a client
system 104, each volume can appear to be a single storage
drive. However, each volume can represent the storage space
in one storage device, an aggregate of some or all of the
storage space in multiple storage devices, a RAID group, or
any other suitable set of storage space. Each volume is con-
figured to store data containers, for example, data files,
scripts, word processing documents, executable programs,
structured and unstructured data and the like. Specifically,
each volume can include a number of individually address-
able files.

In a typical mode of operation, one of the client systems
104.1-104 N transmits one or more I/O commands, such as an
NFS or CIFS request, over network 106 to the storage system
108. The storage system 108 issues one or more [/O com-
mands to storage device 112 to read or write the data on behalf
of the client system. The storage system 108 also issues an
NFS or CIFS response containing the requested data over
network 106 to the client system.

In some instances, operating system 109 may present stor-
age system 108 to clients as virtual storage systems 121A-
121N (may also be referred to as a “VServer” and also
referred to as virtual storage system 121). The virtual storage
system 121 is addressable by the client systems and handles
input/output commands, just like storage system 108. This
allows one to present a physical storage system as multiple
virtual storage systems to various clients.

Each virtual storage system 121 is associated with a physi-
cal storage system 108. For example, as shown in FIG. 1,
virtual storage system 121A is associated with storage system
108A, while virtual storage system 121N is associated with
storage system 108N.

Each virtual storage system is assigned a unique access
address that is used by a client to access the storage system.
For example, each virtual storage system is assigned an Inter-
net Protocol (IP) address that is used by client 104 to send I/O
commands. The IP address may be assigned when virtual
storage system 121 is configured using a management appli-
cation 118 executed by management console 120. The man-
agement console 120 may be, for example, a conventional
PC, workstation, or the like. The storage management appli-
cation 118 can be a software application, typically used by a
storage network administrator to manage a pool of storage
devices and configure virtual storage system 121.

Communication between the storage management appli-
cation 118 and storage system 108 may be accomplished
using any of the various conventional communication proto-

10

15

20

25

30

35

40

45

50

55

60

65

4

cols and/or application programming interfaces (APIs), the
details of which are not germane to the technique being intro-
duced here. This communication can be done through the
network 106 or it can be done via a direct link (not shown)
between the management console 120 and one or more of the
storage systems.

Clustered System: The embodiments disclosed above have
been described with respect to a non-cluster based storage
system 108 that may have a traditional monolithic architec-
ture where a storage server has access to a dedicated storage
subsystem. However, the adaptive embodiments can be
implemented in a cluster based system that has a distributed
architecture and where VServers can be migrated from one
node to another node. The cluster based system is described
below in detail.

FIG. 2 depicts an illustrative embodiment of a storage
environment 200 including a plurality of client systems
204.1-204.2 (similar to clients 104.1-104.N), a clustered stor-
age system 202 and at least one computer network 206 com-
municably connecting the client systems 204.1-204.2 and the
clustered storage system 202. As shown in FIG. 2, the clus-
tered storage system 202 includes a plurality of nodes 208.1-
208.3, a cluster switching fabric 210, and a plurality of mass
storage devices 212.1-212.3.

Each of the plurality of nodes 208.1-208.3 is configured to
include an N-module, a D-module, and an M-host, each of
which can be implemented as a separate processor executable
or machine implemented module. Specifically, node 208.1
includes an N-module 214.1, a D-module 216.1, and an
M-host 218.1, node 208.2 includes an N-module 214.2, a
D-module 216.2, and an M-host 218.2, and node 208.3
includes an N-module 214.3, a D-module 216.3, and an
M-host 218.3.

The N-modules 214.1-214.3 include functionality that
enables the respective nodes 208.1-208.3 to connect to one or
more of the client systems 204.1-204.2 over the computer
network 206, while the D-modules 216.1-216.3 connect to
one or more of the storage devices 212.1-212.3.

The M-hosts 218.1-218.3 provide management functions
for the clustered storage system 202. Accordingly, each of the
plurality of server nodes 208.1-208.3 in the clustered storage
server arrangement provides the functionality of a storage
server.

A switched virtualization layer including a plurality of
virtual interfaces (VIFs) 220 is provided below the interface
between the respective N-modules 214.1-214.3 and the client
systems 204.1-204.2, allowing storage 212.1-212.3 associ-
ated with the nodes 208.1-208.3 to be presented to the client
systems 204.1-204.2 as a single shared storage pool. For
example, the switched virtualization layer may implement a
virtual interface architecture. FIG. 2 depicts only the VIFs
220 at the interfaces to the N-modules 214.1, 214.3 for clarity
of illustration.

The clustered storage system 202 can be organized into any
suitable number of VServers 222A-222N (similar to 121,
FIG. 1), in which each virtual storage system represents a
single storage system namespace with separate network
access. Each virtual storage system has a user domain and a
security domain that are separate from the user and security
domains of other virtual storage systems. Client systems can
access storage space via a VServer from any node of the
clustered system 202.

Each of the nodes 208.1-208.3 may be defined as a com-
puter adapted to provide application services to one or more
of'the client systems 204.1-204.2. In this context, a VServeris
an instance of an application service provided to a client

US 9,083,724 B2

5

system. The nodes 208.1-208.3 are interconnected by the
switching fabric 210, which, for example, may be embodied
as a Gigabit Ethernet switch.

Although FIG. 2 depicts three N-modules 214.1-214.3, the
D-modules 216.1-216.3, and the M-Hosts 218.1-218.3, any
other suitable number of N-modules, D-modules, and
M-Hosts may be provided. There may also be different num-
bers of N-modules, D-modules, and/or M-Hosts within the
clustered storage system 202. For example, in alternative
embodiments, the clustered storage system 202 may include
a plurality of N-modules and a plurality of D-modules inter-
connected in a configuration that does not reflect a one-to-one
correspondence between the N-modules and D-modules.

The client systems 204.1-204.2 of FIG. 2 may be imple-
mented as general-purpose computers configured to interact
with the respective nodes 208.1-208.3 in accordance with a
client/server model of information delivery. In the presently
disclosed embodiment, the interaction between the client sys-
tems 204.1-204.2 and the nodes 208.1-208.3 enable the pro-
vision of network data storage services. Specifically, each
client system 204.1, 204.2 may request the services of one of
the respective nodes 208.1, 208.2, 208.3, and that node may
return the results of the services requested by the client sys-
tem by exchanging packets over the computer network 206,
which may be wire-based, optical fiber, wireless, or any other
suitable combination thereof. The client systems 204.1-204.2
may issue packets according to file-based access protocols,
such as the NFS or CIFS protocol, when accessing informa-
tion in the form of files and directories.

In a typical mode of operation, one of the client systems
204.1-204.2 transmits an NFS or CIFS request for data to one
of'the nodes 208.1-208.3 within the clustered storage system
202, and the VIF 220 associated with the respective node
receives the client request. It is noted that each VIF 220 within
the clustered system 202 is a network endpoint having an
associated IP address, and that each VIF can migrate from
N-module to N-module using the process flow described
below. The client request typically includes a file handle for a
data file stored in a specified volume on at storage 212.1-
212.3.

Storage System Node: FIG. 3A is a block diagram of a
node 208.1 that is illustratively embodied as a storage system
comprising of a plurality of processors 302A and 302B, a
memory 304, a network adapter 310, a cluster access adapter
312, a storage adapter 316 and local storage 313 intercon-
nected by a system bus 308. The local storage 313 comprises
one or more storage devices utilized by the node to locally
store configuration information (e.g., in a configuration data
structure 314).

Node 208.1 may manage a plurality of storage volumes for
a VServer that is migrated from one cluster to another. The
system and processes for migrating a VServer are described
below in more detail.

The cluster access adapter 312 comprises a plurality of
ports adapted to couple node 208.1 to other nodes of cluster
100. In the illustrative embodiment, Ethernet may be used as
the clustering protocol and interconnect media, although it
will be apparent to those skilled in the art that other types of
protocols and interconnects may be utilized within the cluster
architecture described herein. In alternate embodiments
where the N-modules and D-modules are implemented on
separate storage systems or computers, the cluster access
adapter 312 is utilized by the N/D-module for communicating
with other N/D-modules in the cluster 100.

Each node 208.1 is illustratively embodied as a dual pro-
cessor storage system executing a storage operating system
306 (similar to 109, FIG. 1) that preferably implements a

25

40

45

6

high-level module, such as a file system, to logically organize
the information as a hierarchical structure of named directo-
ries and files on storage 212.1. However, it will be apparent to
those of ordinary skill in the art that the node 208.1 may
alternatively comprise a single or more than two processor
systems. [llustratively, one processor 302A executes the func-
tions of the N-module 104 on the node, while the other pro-
cessor 3028 executes the functions of the D-module 106.

The memory 304 illustratively comprises storage locations
that are addressable by the processors and adapters for storing
programmable instructions and data structures. The proces-
sor and adapters may, in turn, comprise processing elements
and/or logic circuitry configured to execute the program-
mable instructions and manipulate the data structures. It will
be apparent to those skilled in the art that other processing and
memory means, including various computer readable media,
may be used for storing and executing program instructions
pertaining to the invention described herein.

The storage operating system 306, portions of which is
typically resident in memory and executed by the processing
elements, functionally organizes the node 208.1 by, inter alia,
invoking storage operations in support of the storage service
implemented by the node.

The network adapter 310 comprises a plurality of ports
adapted to couple the node 208.1 to one or more clients
204.1/204.2 over point-to-point links, wide area networks,
virtual private networks implemented over a public network
(Internet) or a shared local area network. The network adapter
310 thus may comprise the mechanical, electrical and signal-
ing circuitry needed to connect the node to the network.
lustratively, the computer network 206 may be embodied as
an Ethernet network or a Fibre Channel network. Each client
204.1/204.2 may communicate with the node over network
206 by exchanging discrete frames or packets of data accord-
ing to pre-defined protocols, such as TCP/IP.

The storage adapter 316 cooperates with the storage oper-
ating system 306 executing on the node 208.1 to access infor-
mation requested by the clients. The information may be
stored on any type of attached array of writable storage device
media such as video tape, optical, DVD, magnetic tape,
bubble memory, electronic random access memory, micro-
electro mechanical and any other similar media adapted to
store information, including data and parity information.
However, as illustratively described herein, the information is
preferably stored on storage device 212.1. The storage
adapter 316 comprises a plurality of ports having input/output
(I/0) interface circuitry that couples to the storage devices
over an 1/O interconnect arrangement, such as a conventional
high-performance, FC link topology.

VServer Migration: FIG. 3B shows an example of migrat-
ing a VServer 320 from a source cluster 326 to a destination
VServer 324 at a destination cluster 328. Clusters 326 and
328 are similar to cluster 202 described above with respect to
FIG. 2 having a plurality of nodes. The VServer 320 is pre-
sented to clients 204.1-204.N. The clients can read and write
data using storage volumes 330A-330N at the source cluster
via the Vserver 324. The storage volumes may be managed by
one or more nodes of source cluster 326.

To migrate VServer 320 during a migration operation, first
a destination VServer 324 is created at the destination cluster
328 during a setup phase. The destination volumes 332A-
332N are then created at the destination cluster to store infor-
mation associated with source volumes 330A-330N at the
source cluster 326.

The attributes of the destination volumes are similar to the
attributes of the source volumes. As an example, storage
volume attributes include a storage volume size, a unique

US 9,083,724 B2

7

storage volume identifier, permissions for reading and/or
writing information and others. The storage volume attributes
may be stored at a data structure and generally created during
a storage volume configuration process, the details of which
are not germane to the embodiments disclosed herein.

During a baseline phase of the migration operation, a snap-
shot (without derogation any trademark rights of NetApp Inc.
in the term “Snapshot™) of the source VServer 320 is taken
and replicated at the destination cluster. The term snapshot as
used herein means a point in time copy of a storage file
system. The snapshot is a persistent point in time (PPT) image
of'the file system that enables quick recovery of data after data
has been corrupted, lost, or altered. Snapshots can be created
by copying data at predetermined point in time to form a
consistent image, or virtually by using a pointer to form the
image of the data.

After the baseline image is generated, during an update
phase, any changes to the storage volumes at the source
cluster 326 are incrementally replicated at the destination
cluster by taking incremental snapshots. This may be referred
to as incremental replication.

After the update phase, the migration operation enters an
“administrative cutover” phase. During this phase, the pro-
cess, as described below in detail, determines if the entire
migration can be completed within a “cutover” duration. The
cutover duration is a maximum time during which a storage
volume may be unavailable to a client. The cutover duration is
based on the protocol used to access and communicate with a
VServer, for example, NFS, CIFS and others. It is desirable to
complete the migration within the cutover duration so that
client I/O requests are not disrupted.

The embodiments described herein iteratively determine a
transfer rate at which data is being migrated at any given time
and throttles down processing of write requests to ascertain if
the migration can be completed within the cutover duration.
The write requests are throttled so that the resources con-
sumed by client traffic can instead be used for completing the
migration operation.

Once the system determines that cutover can be achieved,
then the migration operation enters the cutover phase, during
which access to VServer 320 via the source cluster 326 is
frozen and a timer is started to monitor cutover completion
within the cutover duration. A final snapshot of the source
volumes is then taken and replicated at the destination cluster.
Configuration information regarding VServer 320 is also rep-
licated at the destination cluster. Thereafter, during an activa-
tion phase, the destination VServer 324 is started and client
requests for reading or writing information are handled by the
destination VServer 324. The processes and details of the
various modules involved in the migration operation are
described below with respect to FIGS. 3C-3E.

FIG. 3C shows a block diagram of a system 374 that is used
for migrating VServer 320 in a clustered environment,
according to one embodiment. The various modules at the
source cluster 326 and the destination cluster 328 may be
implemented at N-Module, D-Module and/or M-hosts. The
adaptive embodiments are not limited to the location where a
specific module is being implemented.

In one embodiment, the source cluster 326 executes a
source migration module 334A and the destination cluster
executes a migration module 334B having a plurality of com-
ponents. The instructions for the source migration module
334A may be executed by a processor out of a memory
device.

In one embodiment, a cutover manager 336A is provided at
the source cluster 326 and a cutover manager 336B is pro-
vided at the destination cluster 328. The cutover manager

10

15

20

25

30

35

40

45

50

55

60

65

8

336 A and 3368 are responsible for handling the various steps
involved during the cutover phase described below in detail.

System 374 also includes migration agent coordinators
338A and 338B at the source cluster 326 and destination
cluster 328, respectively. The migration agent coordinators
co-ordinate among a plurality of migration agents that are
executed at a plurality of nodes within each cluster, as
described below in detail.

System 374 includes a heart beat manager 340A and 340B
executed at the source cluster 326 and destination cluster 328,
respectively. The heart beat managers send messages to each
other using link 376 to ensure that the nodes at the source
cluster and the destination cluster are operational during the
migration operation. The heart beat managers also maintain a
timer to track successful completion of cutover within the
cutover duration, which may be 120 seconds.

Ifa cutover attempt fails or cannot be completed within the
permitted cutover duration, then the system uses fall back
handler 342 A at the source cluster 326 for maintaining access
to VServer 320. The fallback handler 342A will bring back
the VServer 320 online and rolls back any configuration
changes that may have been made to the destination VServer
324 during the different migration operation phases.

System 374 also includes a migration state manager 346 A
and 346B at the source cluster 326 and destination cluster
328, respectively. The migration state managers maintain a
current state of a state machine that manages the migration
process. The state machine may be executed by a master
migration agent, as described below in detail.

In one embodiment, system 374 also includes a configura-
tion replication service (CRS) module 344 A and 344B at the
source cluster 326 and the destination cluster, respectively.
The CRS module 344 A interfaces with a CRS agent 350A via
a director module 352A that interfaces with CRS agent 350B
to copy configuration information of VServer 320. The con-
figuration information may be stored as VServer objects
348A and copied via link 388. At the destination cluster 328,
the CRS agent 350B provides the configuration information
to a director module 352B that stores the information as
VServer objects 348B at the destination cluster 328.

Both the source and the destination cluster nodes also
execute a VIF manager module 354 A and 354B, respectively.
The VIF manager modules provide a virtual interface to net-
working modules 356 A and 3568 at the D-Module 360 A and
360B, respectively. The networking modules provide an
interface between N-Modules and D-Modules.

System 374 also executes a plurality of migration agents
364 A and 364B, according to one embodiment. It is notewor-
thy that when there are multiple nodes in source cluster 326,
then one migration agent, for example, 364 A interfaces with
other migration agents for managing the migration operation
involving storage volumes that are spread out and managed
by different D-Modules. The migration agent 364 A then may
operate as a master migration agent.

In one embodiment, migration agent 364 A generates snap-
shots of the storage volumes 330A-330N via a volume man-
ager 368A. The volume manager 368A may be a part of a file
system 360A of a storage operating system. Once snapshots
are taken, migration agent 364 A initiates updates at the des-
tination cluster via a replication engine 362A. Both the migra-
tion agent and the replication engine interface with the file
system 360A of the storage operating system that is described
below in detail.

The migration agent 364 A also interfaces with a quality of
service (QOS) module 370 to throttle and manage client
traffic during the migration operation, as described below in

US 9,083,724 B2

9

detail. Migration agent 364 A also maintains the state of the
migration as executed by a state machine, described below in
detail.

At the destination cluster, migration agent 360B interfaces
with file system 360B and the replication engine 362 to ensure
that information and snapshots are being updated at the des-
tination cluster.

Replication engine 362 A uses a block replication protocol
(BRE) that is used to transfer information from D-blade 356 A
to D-Module 3568 via link 390. One example of such a BRE
is the SpinNp protocol provided by NetApp Inc, the assignee
of the present application and without derogation of any
trademark rights of NetApp Inc. Details of SpinNp are not
germane to the embodiments disclosed herein.

FIG. 3D shows an example of multiple nodes and migra-
tion agents that are involved in a migration operation. Node 0
in FIG. 3D operates as the master node with migration agent
364A operating as a master migration agent. Nodes 1 and 2
have migration agents 364¢ and 364D interfacing with at least
the replication engines 362C and 362D, QOS modules 370B
and 370C and the file systems 360C and 360D. Details of the
migration process are provided below.

FIG. 3E shows a high level process 302 with the various
phases of a migration operation, according to one embodi-
ment. The process begins in block B303. In block B305, a
setup phase for migrating VServer 320 from the source cluster
326 to a destination cluster 328 is executed. During the setup
phase a storage administrator performs pre-check operations
to determine that there are no conflicts with the migration. For
example, if a storage volume is in the middle of a “volume
move” operation from one location to another, then migration
may not be initiated.

During block B305, the destination VServer 324 is created
as a place holder that resembles the source VServer 320. This
includes creating storage volumes at the destination with the
same name and size, appropriate logical interfaces (LIFs) at
the appropriate network ports with a same address (for
example, IP addresses and world wide numbers (WWNs) of
the source storage volumes. The state of the source VServer
320is set to a special state, indicating that it is being migrated.
The state of the destination VServer 324 is set to indicate that
it is the migration destination for VServer 320 such that the
LIFs presented to clients for destination VServer 324 are not
initialized until the migration operation is completed. In one
embodiment, the destination VServer 324 may be generated
using a graphical user interface (GUI) or a command line
interface (CLI).

In block B307, a baseline and an update phase for the
migration is executed. During the baseline phase, a snapshot
of volumes 3304-330N is taken and then transferred by rep-
lication engine 362 A using link 390. First, a baseline transfer
of' the storage volume data is started. Once that is completed,
then incremental changes to the storage volumes 330A-330N
are replicated at the destination cluster 328 during the update
phase. Replication continues, until the data at the source and
destination clusters is within a desired level.

Inblock B309, an administrative cutover phase is executed.
The goal of the administrative phase is to complete incremen-
tal replication of VServer 320 within a certain duration, for
example, X seconds. This is achieved by monitoring a rate at
which replication occurs at any given time and then ascertain
the duration in which the replication can be completed. If the
duration is more than X seconds, then the QOS module 370 is
used to throttle down the rate at which I/O requests for clients
is being processed. This provides more bandwidth and
resources towards the replication. The replication time is
measured again to ensure that replication can be completed

25

30

40

45

50

10

within X seconds. The administrative phase is described
below in detail with respect to FIG. 3E.

Inblock B311, the cutover phase is executed. This phase is
monitored by the cutover manager 336 A as described below
in detail. A timer is started by the heartbeat manager 340A. A
final snapshot of source volumes 330A-330N is taken. The
final snapshot is then transferred to the destination cluster 328
using the BRE protocol vialink 390. The destination volumes
332A-332N are then modified so that they match the source
volumes. The LIFs that present the VServer 320 to the clients
are shut down.

It is noteworthy that if the system detects that the migration
will not complete within the cutover duration, then a fallback
phase is executed. During fallback, the VServer 320 is
brought online and the migration operation returns to the
administrative cutover phase.

In block B313, an activate phase is executed. During this
phase, an identifier for the destination VServer 324 is modi-
fied such that the identity of the destination VServer 324 is
exactly the same as that of the source VServer 320. This
enables a client to access VServer 324 without changing
anything at the client system. The LIFs at the destination
cluster 328 are activated allowing clients to communicate
with the destination cluster 328. The storage volumes 330A-
330N are taken offline and optionally, VServer 320 may be
deleted. /O operations for clients using destination cluster
328 are then started.

FIG. 3E shows a state machine diagram 317 executed by a
state machine, according to one embodiment. The state
machine may be executed by the migration state manager
346 A/migration agent 364 A or any other module to track the
various migration operation phases that have been described
above with respect to FIG. 3D.

A migration operation starts at state 319, when the setup
phase for the migration operation is started. The migration
agents at each node of the source cluster 326 are started.

A baseline snapshot of the source storage volumes 330A-
330N is taken at state 321. If there is a failure at this state, the
migration enters an abort state 331. The abort state can be
entered from various states, as shown in FIG. 3E.

After the baseline snapshots are taken, the snapshots are
transferred to the destination cluster 328. Thereafter, the
migration enters an update phase at state 323. During this
state, incremental changes to the source volumes, after the
baseline snapshots continue to be transferred to the destina-
tion cluster 328. After certain number of transfers, the migra-
tion is ready to enter into the administrative cutover phase at
state 325. This state is reached when the migration agent
364 A receives a “Ready for Admin Cutover” message from
all the migration agents of the plurality of nodes that are
affected by the migration operation within the source cluster
326 as well as the destination cluster 328.

As mentioned above, during the administrative cutover
state, the system determines if the transfer from the source
cluster can be completed within a certain duration, for
example, X seconds. This is an iterative process during which
the migration agents of each node communicate with the
QOS modules to throttle client traffic such that the replication
can take priority over processing of I/O requests. A heartbeat
thread is also started during this phase to ensure that both
source and cluster nodes are on-line. Once all the migration
agents confirm with the master migration agent (for example,
364A) that replication can be completed within the X sec-
onds, then the master migration agent sends a message to the
destination cluster to start the cutover phase at state 327.

During this state, the migration agents and the heart beat
threads are monitored to ensure that the migration agents and

US 9,083,724 B2

11

the destination cluster nodes are online. A timer is also started
to ensure that cutover can be completed within an appropriate
time. During cutover, a final snapshot of the source volumes
is taken and transferred to the destination cluster. The con-
figuration information of the source volumes is also trans-
ferred to the destination cluster. If for some reason, the timer
expires, a migration agent or the destination cluster 328 go
offline, the migration operation reverts back to the update
state 323. In another embodiment, the migration state may
move to the abort state 331 when the cutover operation is
aborted.

If the final snapshots are successtully transferred and the
source volumes are quiesced, then the shutdown VServer at
state 329 is reached. During this state, the activate phase
described above is executed. Thereafter, the migration opera-
tion is completed.

FIG. 3G shows a process 335 for executing the adminis-
trative phase, according to one embodiment. The process
begins in block B337.

In block B339, a current transfer rate at which information
is being transferred by the replication engine 362A is
obtained by the migration agent 364A. As explained above,
the replication engine 362A is responsible for transferring
information between the source and destination clusters. The
replication engine 362A maintains a data structure (not
shown) to track the amount of information that is transferred
within a given duration. This transfer rate is provided to the
migration agent 364A. When the storage volumes affected by
the migration operation are spread out among multiple nodes,
then the migration agent of each node provides the informa-
tion to migration agent 364 A, operating as a master migration
agent.

In one embodiment, the migration agent 364 A receives the
transfer rate over a period of time so that the migration agent
can tabulate the average transfer rate over the period of time.
The migration agent then determines a throughput rate (or
convergence rate) to ascertain if the migration operation can
be completed within the cutover duration. The throughput
rate may be based on the product of the average transfer rate
and the cutover duration.

In block B341, the migration agent determines if the
throughput rate is enough to complete the duration within the
cutover duration. The migration agent 364 A makes this deter-
mination by monitoring the actual transfer rate over a certain
duration in the administrative cutover phase. The monitoring
step is performed so that the system can reliably enter the
cutover phase.

If the throughput rate is low and cannot complete the
migration operation within the cutover duration, in block
B343, the migration agent 362 A notifies the QOS module 370
of all the migration agents within the source cluster that are
affected by the migration operation to throttle down process-
ing of client I/O requests such that more resources are allo-
cated to the migration operation for completing the transfer.

In one embodiment, QOS module 370 maintains a plurality
of data structure for allocating bandwidth for client /O
requests. The bandwidth may be assigned by a storage admin-
istrator. The bandwidth information is provided to the storage
operating system that handles client requests.

After the client I/O processing is throttled down, the source
cluster continues to perform incremental replication in block
B345. The process then reverts to block B339 so that the
migration agent can iteratively determine and confirm that the
throughput rate is sufficient to complete the migration opera-
tion. Once that determination is made, in block B347, the
migration agent 364A sends a message to migration agent
364B that it is ready to start the cutover phase. The cutover

10

15

20

25

30

35

40

45

50

55

60

65

12

phase has been described above and the migration operation
is then completed or aborted, if there is an error, as described
above in detail.

Operating System: FIG. 4 illustrates a generic example of
storage operating system 306 executed by node 208.1,
according to one embodiment of the present disclosure. The
storage operating system 306 manages all the storage vol-
umes and conducts read and write operations. To complete the
migration operation within the cutover duration, the migra-
tion agents at all the nodes interface with the storage operat-
ing system 306 layers. The QOS module 370 also interfaces
with the storage operating system 306 to throttle client write
requests to increase the throughput rate for the BRE to com-
plete the migration operation.

In one example, storage operating system 306 may include
several modules, or “layers” executed by one or both of
N-Module 214 and D-Module 216. These layers include a file
system manager 400 that keeps track of a directory structure
(hierarchy) of the data stored in storage devices and manages
read/write operations, i.e. executes read/write operations on
storage in response to client 204.1/204.2 requests.

Operating system 306 may also include a protocol layer
402 and an associated network access layer 406, to allow node
208.1 to communicate over a network with other systems,
such as clients 204.1/204.2. Protocol layer 402 may imple-
ment one or more of various higher-level network protocols,
such as NFS, CIFS, Hypertext Transfer Protocol (HTTP),
TCP/IP and others, as described below.

Network access layer 406 may include one or more drivers,
which implement one or more lower-level protocols to com-
municate over the network, such as Ethernet. Interactions
between clients 204.1/204.2 and mass storage devices 212.1
are illustrated schematically as a path, which illustrates the
flow of data through operating system 306.

The operating system 306 may also include a storage
access layer 404 and an associated storage driver layer 408 to
allow D-module 216 to communicate with a storage device.
The storage access layer 404 may implement a higher-level
storage protocol, such as RAID, while the storage driver layer
408 may implement a lower-level storage device access pro-
tocol, such as FC or SCSI.

As used herein, the term “storage operating system” gen-
erally refers to the computer-executable code operable on a
computer to perform a storage function that manages data
access and may, in the case of a node 208.1, implement data
access semantics of a general purpose operating system. The
storage operating system can also be implemented as a micro-
kernel, an application program operating over a general-pur-
pose operating system, such as UNIX® or Windows XP®, or
as a general-purpose operating system with configurable
functionality, which is configured for storage applications as
described herein.

In addition, it will be understood to those skilled in the art
that the invention described herein may apply to any type of
special-purpose (e.g., file server, filer or storage serving
appliance) or general-purpose computer, including a standa-
lone computer or portion thereof, embodied as or including a
storage system. Moreover, the teachings of'this disclosure can
be adapted to a variety of storage system architectures includ-
ing, but not limited to, a network-attached storage environ-
ment, a storage area network and a storage device directly-
attached to a client or host computer. The term “storage
system” should therefore be taken broadly to include such
arrangements in addition to any subsystems configured to
perform a storage function and associated with other equip-
ment or systems. It should be noted that while this description
is written in terms of a write any where file system, the

US 9,083,724 B2

13

teachings of the present invention may be utilized with any
suitable file system, including a write in place file system.

Processing System: FIG. 5 is a high-level block diagram
showing an example of the architecture of a processing sys-
tem that may be used according to one embodiment. The
processing system 500 can represent management console
120, client 104 or storage system 108, for example. Note that
certain standard and well-known components which are not
germane to the present invention are not shown in FIG. 5.

The processing system 500 includes one or more
processor(s) 502 and memory 504, coupled to a bus system
505. The bus system 505 shown in F1G. 5 is an abstraction that
represents any one or more separate physical buses and/or
point-to-point connections, connected by appropriate
bridges, adapters and/or controllers. The bus system 505,
therefore, may include, for example, a system bus, a Periph-
eral Component Interconnect (PCI) bus, a HyperTransport or
industry standard architecture (ISA) bus, a small computer
system interface (SCSI) bus, a universal serial bus (USB), or
an Institute of Electrical and Electronics Engineers (IEEE)
standard 1394 bus (sometimes referred to as “Firewire”).

The processor(s) 502 are the central processing units
(CPUs) of the processing system 500 and, thus, control its
overall operation. In certain embodiments, the processors 502
accomplish this by executing software stored in memory 504.
A processor 502 may be, or may include, one or more pro-
grammable general-purpose or special-purpose microproces-
sors, digital signal processors (DSPs), programmable con-
trollers, application specific integrated circuits (ASICs),
programmable logic devices (PLDs), or the like, or a combi-
nation of such devices.

Memory 504 represents any form of random access
memory (RAM), read-only memory (ROM), flash memory,
or the like, or a combination of such devices. Memory 504
includes the main memory of the processing system 500.
Software 506 which implements the process steps described
above may reside in and execute (by processors 502) from
memory 504.

Also connected to the processors 502 through the bus sys-
tem 505 are one or more internal mass storage devices 510,
and a network adapter 512. Internal mass storage devices 510
may be or include any conventional medium for storing large
volumes of data in a non-volatile manner, such as one or more
magnetic or optical based disks. The network adapter 512
provides the processing system 500 with the ability to com-
municate with remote devices (e.g., storage servers 20) over
a network and may be, for example, an Ethernet adapter, a
Fibre Channel adapter, or the like.

The processing system 500 also includes one or more
input/output (I/0) devices 508 coupled to the bus system 63.
The 1/O devices 508 may include, for example, a display
device, a keyboard, a mouse, etc.

Thus, a method and apparatus for migrating a virtual stor-
age system have been described. Note that references
throughout this specification to “one embodiment” or “an
embodiment” means that a particular feature, structure or
characteristic described in connection with the embodiment
is included in at least one embodiment of the present inven-
tion. Therefore, it is emphasized and should be appreciated
that two or more references to “an embodiment” or “one
embodiment” or “an alternative embodiment” in various por-
tions of this specification are not necessarily all referring to
the same embodiment. Furthermore, the particular features,
structures or characteristics being referred to may be com-
bined as suitable in one or more embodiments of the inven-
tion, as will be recognized by those of ordinary skill in the art.

10

15

20

25

30

35

40

45

50

55

60

14

While the present disclosure is described above with
respect to what is currently considered its preferred embodi-
ments, it is to be understood that the disclosure is not limited
to that described above. To the contrary, the disclosure is
intended to cover various modifications and equivalent
arrangements within the spirit and scope of the appended
claims.

What is claimed is:

1. A machine implemented method for a non-disruptive
migration of a source virtual storage system from a source
cluster to a destination cluster, the source cluster and the
destination cluster having a plurality of nodes executing
instructions for a storage operating system, comprising:

monitoring a current transfer rate for migrating informa-

tion from the source cluster to the destination cluster
during a migration operation;

iteratively reducing a rate at which I/O requests are pro-

cessed until a transfer rate for transferring the informa-
tion from the source cluster to the destination cluster
within the duration is reached; and

entering a cutover phase for the migration operation when

the virtual storage system presented by the source clus-
ter is taken offline for the duration and after the infor-
mation is migrated to the destination cluster, the virtual
storage system is presented by the destination cluster.

2. The method of claim 1, wherein the migration operation
begins after a setup phase when a destination virtual storage
system is created to mirror the virtual storage system pre-
sented by the source cluster.

3. The method of claim 1, wherein to initiate the migration
operation, a point in time copy of storage volumes managed
by the virtual storage system is first taken as a baseline image
and transferred to the destination cluster.

4. The method of claim 3, wherein any changes after the
baseline image are incrementally replicated at the destination
cluster during an update phase, while a client system contin-
ues to use the virtual storage system via the source cluster.

5. The method of claim 1, wherein a timer is used to
monitor if the cutover phase can be completed within the
duration, before providing access to the virtual storage sys-
tem via the destination cluster.

6. The method of claim 1, wherein a state machine moni-
tors a plurality of phases for the migration operation and ifthe
cutover phase cannot be completed within the duration, the
migration operation is aborted.

7. The method of claim 1, wherein a state machine moni-
tors a plurality of phases for the migration operation and ifthe
cutover phase cannot be completed within the duration, then
the migration operation reverts to an update phase where any
changes since a baseline image of the source storage volumes
is taken are incrementally replicated at the destination cluster.

8. The method of claim 1, wherein a master migration agent
interfaces with a plurality of migration agents executed at a
plurality of nodes for migrating information at source vol-
umes managed by the plurality of nodes for the virtual storage
system presented by the source cluster.

9. A machine implemented method for a non-disruptive
migration operation for migrating a source virtual storage
system from a source cluster to a destination cluster, the
source cluster and the destination cluster having a plurality of
nodes executing instructions for a storage operating system,
comprising:

generating a destination virtual storage system during a

setup phase of the migration operation such that storage
space can be presented to a client after completing the
migration operation;

US 9,083,724 B2

15

generating a plurality of storage volumes at the destination
cluster that are similar in size and attributes as a plurality
of source storage volumes used by the virtual storage
system presented by the source cluster to the client;

taking a baseline point in time copy of the plurality of
source storage volumes and replicating the baseline
point in time copy at the destination storage volumes
during a baseline phase of the migration operation;

during an update phase, taking incremental point in time
image of the plurality of source storage volumes for any
changes after the baseline point in time copy was taken;

during an administrative cutover phase, monitoring a cur-
rent transfer rate at which information from the source
cluster is being migrated to the destination cluster;

iteratively reducing a rate at which I/O requests for a client
are processed until a desired transfer rate for transferring
information from the source cluster to the destination
cluster within a duration is reached; and

executing a cutover phase when the virtual storage system
presented by the source cluster is taken offline for the
duration and after the information is migrated to the
destination cluster, the destination virtual storage sys-
tem with destination storage volumes is presented by the
destination cluster to the client to read and write data.

10. The method of claim 9, wherein during the update
phase, a client system continues to use the virtual storage
system via the source cluster.

11. The method of claim 9, wherein a timer is used to
monitor if the cutover phase can be completed within the
duration, before providing access to the virtual storage sys-
tem via the destination cluster.

12. The method of claim 9, wherein a state machine moni-
tors a plurality of phases for the migration operation and if the
cutover phase cannot be completed within the duration, the
migration operation is aborted.

13. The method of claim 9, wherein a state machine moni-
tors various phases of the migration operation and if the
cutover phase cannot be completed within the duration, then
the migration operation reverts to the update phase.

14. The method of claim 9, wherein a master migration
agent interfaces with a plurality of migration agents executed
at a plurality of nodes for migrating information at source
volumes managed by the plurality of nodes for the virtual
storage system presented by the source cluster.

15. A system for a non-disruptive migration operation,
comprising:

a memory having machine readable medium comprising
machine executable code having instructions stored
thereon; and a processor module coupled to the memory
configured to execute the machine executable code to:

generate a destination virtual storage system during a setup
phase of a migration operation such that storage space
can be presented to a client after completing the migra-
tion operation;

generate a plurality of storage volumes at a destination
cluster that are similar in size and attributes as a plurality
of source storage volumes used by a virtual storage
system presented by a source cluster to the client;

take a baseline point in time copy of the plurality of source
storage volumes and replicating the baseline point in
time copy at the destination storage volumes during a
baseline phase of the migration operation;

during an update phase, take incremental point in time
image of the plurality of source storage volumes for any
changes after the baseline point in time copy was taken;

15

40

45

60

16

during an administrative cutover phase, monitor a current
transfer rate at which information from the source clus-
ter is being migrated to the destination cluster;

iteratively reduce a rate at which 1/O requests for a client
are processed until a desired transfer rate for transferring
information from the source cluster to the destination
cluster within a duration is reached; and

execute a cutover phase when the virtual storage system

presented by the source cluster is taken offline for the
duration and after the information is migrated to the
destination cluster, the destination virtual storage sys-
tem with destination storage volumes is presented by the
destination cluster to the client to read and write data.

16. The system of claim 15, wherein during the update
phase, a client system continues to use the virtual storage
system via the source cluster.

17. The system of claim 15, wherein a timer is used to
monitor if the cutover phase can be completed within the
duration, before providing access to the virtual storage sys-
tem via the destination cluster.

18. The system of claim 15, wherein a state machine moni-
tors a plurality of phases for the migration operation and ifthe
cutover phase cannot be completed within the duration, the
migration operation is aborted.

19. The system of claim 15, wherein a state machine moni-
tors various phases of the migration operation and if the
cutover phase cannot be completed within the duration, then
the migration operation reverts to the update phase.

20. The system of claim 15, wherein a master migration
agent interfaces with a plurality of migration agents executed
at a plurality of nodes for migrating information at source
volumes managed by the plurality of nodes for the virtual
storage system presented by the source cluster.

21. A non-transitory, machine readable storage medium
having stored thereon instructions for performing a method
for a non-disruptive migration operation, comprising
machine executable code which when executed by at least one
machine, causes the machine to:

generate a destination virtual storage system during a setup

phase of the migration operation such that storage space
can be presented to a client after completing the migra-
tion operation;

generate a plurality of storage volumes at a destination

cluster that are similar in size and attributes as a plurality
of source storage volumes used by a virtual storage
system presented by a source cluster to the client;

take a baseline point in time copy of the plurality of source

storage volumes and replicating the baseline point in
time copy at the destination storage volumes during a
baseline phase of the migration operation;
during an update phase, take incremental point in time
image of the plurality of source storage volumes for any
changes after the baseline point in time copy was taken;

during an administrative cutover phase, monitor a current
transfer rate at which information from the source clus-
ter is being migrated to the destination cluster;

iteratively reduce a rate at which 1/O requests for a client
are processed until a desired transfer rate for transferring
information from the source cluster to the destination
cluster within a duration is reached; and

execute a cutover phase when the virtual storage system

presented by the source cluster is taken offline for the
duration and after the information is migrated to the
destination cluster, the destination virtual storage sys-
tem with destination storage volumes is presented by the
destination cluster to the client to read and write data.

US 9,083,724 B2

17

22. The storage medium of claim 21, wherein a timer is
used to monitor if the cutover phase can be completed within
the duration, before providing access to the virtual storage
system via the destination cluster.

23. The storage medium of claim 21, wherein a state
machine monitors a plurality of phases for the migration
operation and if the cutover phase cannot be completed within
the duration, the migration operation is aborted or reverts to
the update phase.

24. The storage medium of claim 21, wherein a master
migration agent interfaces with a plurality of migration
agents executed at a plurality of nodes for migrating informa-
tion at source volumes managed by the plurality of nodes for
the virtual storage system presented by the source cluster.

#* #* #* #* #*

10

15

18

